The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 B.1.351 and other variants of concern in preclinical studies

Alexandra J Spencer^{1*}, Susan Morris¹, Marta Ulaszewska¹, Claire Powers¹, Reshma Kailath¹, Cameron Bissett¹, Adam Truby¹, Nazia Thakur^{1,2}, Joseph Newman², Elizabeth R Allen¹, Chang Liu^{3,4}, Wanwisa Dejnirattisai³, Juthathip Mongkolsapaya³, Hannah Davies¹, Francesca R Donnellan¹, David Pulido¹, Thomas P. Peacock⁵, Wendy S. Barclay⁵, Helen Bright⁶, Kuishu Ren⁶, Gavin Screaton³, Patrick McTammy⁶, Dalan Bailey², Sarah C Gilbert¹, Teresa Lambe¹

- 1 The Jenner Institute, Nuffield Department of Medicine, University of Oxford, United Kingdom
- 2 The Pirbright Institute, Woking, Surrey, United Kingdom
- 3 The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
- 4 Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
- 5 Department of Infectious Disease, Imperial College London, United Kingdom
- 6 AstraZeneca, Gaithersburg 20878, Maryland, United States

*Correspondence to: Alexandra J Spencer, The Jenner Institute, ORCRB, Roosevelt Drive, Oxford

OX3 7DQ. Email: alex.spencer@ndm.ox.ac.uk.

Abstract:

There is an ongoing global effort, to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations that negatively impact the role of neutralising antibodies. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine against the variant of concern B.1.351 (AZD2816). We demonstrate AZD2816 is immunogenic after a single dose and when used as a booster dose in animals primed with original vaccine AZD1222, we see no evidence of original antigenic sin but high titre antibodies against a number of variant spike proteins. In addition, neutralisation titres against B.1.351 (Beta), B.1.617.1 (Kappa) and B.1.617.2 (Delta), are induced in these boost regimens. These data support the ongoing clinical development and testing of this new variant vaccine.

Introduction:

Since the first reports of infections caused by a novel coronavirus, there has been an unprecedented global effort to design, manufacture and test multiple vaccines against SARS-CoV-2. All authorised vaccines, to date, target the full-length spike protein of SARS-CoV-2 and induce neutralising antibodies to varying levels. COVID-19 vaccines are being deployed world-wide and

effectiveness data is now demonstrating the impact vaccination has on preventing COVID related hospital admissions and death ¹⁻³.

Over the course of the pandemic a number of variants of concern (VoC) have been identified, each containing multiple mutations within the viral genome. Variants with mutations in the spike protein and in particular the receptor binding domain (RBD), which facilitates viral cell entry via the angiotensin-converting enzyme 2 (ACE2) receptor, are of most concern. There is the potential for VoC to escape vaccine-induced host immunity due to the reduced ability of neutralising antibodies to bind and prevent cell entry of the VoC, resulting in infection and disease even in vaccinated individuals.

The B.1.351 variant (Beta)⁴, first identified in October 2020, contains 10 changes across the spike protein with 3 amino acid changes in the RBD region. These changes in RBD are reported to increase binding between spike and ACE2, leading to overall reduced ability of antibodies induced against the original virus to block cell entry ⁵. Efforts are underway to produce second generation SARS CoV-2 vaccines targeting VoC.

In this study we describe the generation and preclinical assessment of ChAdOx1 expressing B.1.351 spike protein; AZD2816. Importantly both binding and neutralising antibodies against B.1.351 are measured after single dose vaccination. When AZD2816 is used as a booster dose in mice already primed with the original ChAdOx1 nCoV-19 (AZD1222) we measure strong antibody binding against both the original wild-type and B.1.351 spike protein, with booster doses increasing the antibody response and neutralising ability against other variants. These data support the clinical testing of AZD2816 either alone or in prime-boost regimens with heterologous spike proteins.

Results:

Single dose of vaccine induces cross-reactive immunity.

Following reports of the new SARS-CoV-2 variant B.1.351 expressing multiple mutations across the spike protein and reduced ability of vaccine induced and convalescent sera to neutralise this variant virus ⁵, we generated a new ChAdOx1 vector expressing spike containing the key B.1.351 mutations (Figure 1). To assess the immunogenicity, BALB/c mice were immunised with 10⁸iu AZD1222 (ChAdOx1 nCoV-19), AZD2816 (ChAdOx1 nCoV-19 B.1.351) or with 10⁸iu of each vaccine mixed together prior to immunisation (Figure 2A). Comparable levels of anti-spike antibodies were observed in all groups of vaccinated mice against both wild-type spike and B.1.351 spike protein (Figure 2B). Mixing both vaccines together did not compromise the antibody response to either spike protein, nor was there a difference between total ELISA Units measured on day 9 or day 16 post-vaccination (Figure 2B). This rapid onset of a measurable antibody response suggests this vaccine is highly immunogenic. Neutralising antibodies, measured in pseudotyped virus neutralisation assay, were detected against original wild-type and B.1.351 (Figure 2C).

T cell responses were measured by IFNγ ELISpot with splenocytes stimulated with peptide pools containing peptides common to both vaccines, wild-type spike peptides or B.1.351 peptides (Table S2). Equivalent numbers of IFNγ producing cells were detected against all pools of spike peptides at both timepoints measured (Figure 2D), with responses to the common peptides dominating the response and minimal responses observed against variant regions. Consistent with earlier studies ⁶, the T cell response was dominant towards the first 2 peptide pools corresponding to the S1 portion of the protein (Figure 2E) across all vaccine groups.

To determine whether a booster vaccination with a variant vaccine was impacted in the presence of a response to the wild-type spike protein, mice were immunised with one dose of AZD1222 prior to boosting with AZD2816 and antibody responses compared across relevant groups. Total IgG responses, measured by ELISA, showed that a booster dose of AZD2816 increased the antibody titre against wild-type spike and B.1.351 spike (Figure 3A). In addition, boosting AZD1222 primed mice with AZD2816 increased the antibody titre against other variant proteins including P.1 (Gamma) and B.1.429 (Epsilon) when compared with a single dose of AZD1222 (Figure 3B). Neutralising antibody titres were also higher against the wild-type, B.1.351, B.1.617.1 (Kappa) or B.1.617.2 (Delta) (variants of concern) in two dose regimens with AZD1222 and AZD2816 (Figure 3C and Table 1).

AZD2816 as a third dose maintains T cell responses

To maximise the vaccine induced immune response and associated vaccine efficacy against disease, AZD1222 has been authorised for use in a 2-dose vaccination regimen. To determine the impact of immunisation with AZD2816 after the clinically recommended dosing regimen, BALB/c mice received two doses of AZD1222 4 weeks apart and were boosted with 108 iu of AZD2816 or remained unboosted (Figure 4A). Although a booster dose with AZD2816 did not further increase the frequency of antigen specific T cells (Figure 4B), the breadth of the cellular immune response remained consistent (Figure 4B). The cellular immune response is dominated by responses to common SARS-CoV-2 spike peptides with minimal reactivity against peptides from either original spike WT or B.1.153 as measured after a single dose of vaccine (Figure 2). Most importantly, a third dose vaccination with AZD2816 did not alter T cell response with CD4⁺ T cells shown to produce primarily IFNy, and no-significant difference in the proportion or number of T effector (Teff), T effector memory (Tem) or T central memory (Tcm) CD4⁺ T cells observed, (Figure 4C). Consistent with previous data in mice ⁶, the anti-spike cell-mediated response was dominated by CD8⁺ T cells, with a high frequency of CD8⁺ T cells producing IFN γ and TNF α was observed in both groups of mice (Figure 4D left), with a response dominated by Teff and Tem CD8⁺ T cells, that was similar between vaccine regimens.

AZD2816 as a third dose can further enhance antibody responses induced by two doses of AZD1222

Antibody responses were also compared between mice receiving a homologous AZD1222 two dose regimen or with a third dose AZD2816 vaccination. A significant increase in total IgG ELISA units was observed against wild-type spike following a booster dose, while a small (albeit not statistically significant) increase against B.1.351 protein was observed (Figure 5B). Antibody binding was observed against all variant spike proteins (Figure 5C), with significantly higher responses observed in AZD2816 boosted mice against variant proteins B.1.1.7 (Alpha) and B.1.429 (Figure 5C). Neutralising responses were detected in all vaccine groups against wild-type spike, B.1.351, B.1.617.1 and B.1.617.2 (Table 1), with higher neutralisation titres against the two variant proteins observed in AZD2816 boosted animals (Figure 5D).

Overall the data shows that a booster dose with a new ChAdOx1 against the new variant B.1.351 (AZD2816), can further enhance antibody responses against SARS-CoV-2 B.1.351 and provide cross-reactivity against other variant proteins.

Discussion:

In populations where vaccination against SARS-CoV-2 has been widely used the impact on prevention of severe disease, hospitalisation and death has been demonstrated, but variant

viruses with mutations in the spike protein are now in circulation, and the efficacy of the original vaccines against VoCs may be reduced.

The VoC B.1.351 was first identified in South Africa and was thought to have driven the second wave of infection resulting in a larger proportion of young individuals being infected than previously seen, with health officials indicating that B.1.351 spreads faster than other variants. B.1.351 contains several mutations across the S1 portion of spike protein. In particular, three mutations involved in binding of spike to the ACE2 receptor have been shown to increase the strength of spike-ACE2 binding, with some antibodies from convalescent or vaccinated individuals showing reduced ability to neutralise this variant virus ⁵. A number of common amino acid changes within the RBD and NTD region of the spike protein have been identified amongst SARS-CoV-2 variants (Table S2). The D614G identified in all VoC, increases virus infectivity ^{7,8}, potentially through increased density of spike on the virion surface 9. The L452R change is present in B.1.429, B.1.617.1 and B.1.617.2 shown to reduce sensitivity of neutralising antibodies ⁷. The E484K is present in B.1.351 and P.1 isolates is believed to enhance binding affinity of RBD to ACE2 10,11 and evasion from antibodies ¹². The N501Y is present in B.1.351, B.1.1.7 and P.1 variants alone does not appear to significantly impact neutralisation, but N501Y in combination with E484K and D614G can affect sera neutralisation titres ^{13,14}. A high proportion of isolated neutralising anti-spike antibody bind to the RBD domain of spike ¹⁵⁻¹⁷, there is concern these cumulative changes are leading to the reduced ability of antibodies induced against WT SARS-CoV-2 to neutralise VoCs 5,18,19

The mRNA and viral vector technologies that allowed rapid production of vaccines against SARS-CoV-2 in early 2020 can be readily employed to express the spike protein from VoCs rather than the original virus. Here we generated AZD2816, a new ChAdOx1 nCoV-19 vaccine expressing B.1.351 spike protein and assessed the immunogenicity in mice. As priming of the immune response to the original wild-type spike protein may impact the ability to switch specificity of the response to B.1.351, we measured antibody and T cell responses after one or two doses of the original ChAdOx1 nCoV-19 vaccine (AZD1222) followed by a single dose of AZD2816.

While a single dose of either AZD1222 or AZD2816 induces rapid T cells and antibodies capable of binding and neutralising wild-type and B.1.351 spike protein, antibody responses can be increased with a booster dose of either AZD1222 or AZD2816. Importantly, we saw no evidence that priming of the immune system response was detrimental when mice received a booster dose of ChAdOx1 expressing B.1.351 expressing protein. Equivalent high levels of T cells were observed, with equivalent cytokines produced and populations of effector and memory T cells (Figure 4). Boosting mice with one dose of AZD2816 after a one or two doses of AZD1222 led to an increase in binding antibody titres in addition to neutralisation against B.1.351 and both B.1.617 variants. In addition, higher antibody titres against P.1, B.1.1.7. B.1.429 and D614G spike was also observed.

Ongoing surveillance has identified B.1.617.2 as a VoC that is spreading rapidly within the UK and elsewhere. Two dose vaccination with AZD1222 induces antibodies capable of neutralising B.1.617.1 and B.1.617.2 (Table 1), and early real-world evidence suggest that the effectiveness of this regimen against hospitalisation and death is maintained (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/988619/Variants_of_Concern_VOC_Technical_Briefing_12_England.pdf). Encouragingly neutralisation can be further enhanced with a 3rd dose of vaccine (Table 1), supporting the clinical assessment of these regimens.

The data presented herein demonstrates that vaccination with ChAdOx1 nCoV-19 (AZD1222) induces high titre cross-reactive antibodies capable of neutralising a number of SARS-CoV-2 variants of concern, B.1.351, B.1.617.1 and B.1.617.2. Most importantly these responses can be further enhanced by a booster dose of vaccine expressing the spike protein from B.1.351. These

data support clinical assessment of AZD2816 in vaccine naïve individuals as well as those previously vaccinated with AZD1222.

Methods:

Vector Construction;

AZD2816 vaccine was constructed as previously described ²⁰. In brief, the B.1.351 glycoprotein (S) gene 4 was codon-optimized for expression in human cell lines and synthesized with the tissue plasminogen activator (tPA) leader sequence at the 5' end by GeneArt Gene Synthesis (Thermo Fisher Scientific). The S gene was inserted into the Gateway® recombination cassette of the shuttle plasmid containing a human cytomegalovirus major immediate early promoter (IE CMV), which includes intron A and two tetracycline operator 2 sites, and the bovine growth hormone polyadenylation signal. BACs containing the ChAdOx1 SARS-CoV-2 B.1.351 Spike protein were prepared by Gateway® recombination between the ChAdOx1 destination DNA BAC vector 21 and the shuttle plasmids containing the SARS CoV-2 S gene expression cassettes using standard protocols resulting in the insertion of the SARS-CoV-2 expression cassette at the E1 locus. The ChAdOx1 SARS CoV-2 S adenovirus genome was excised from the BAC using unique Pmel sites flanking the adenovirus genome sequence. ChAdOx1 SARS CoV-2 S viral vectors were rescued in T-REx[™] cells (Invitrogen, Cat. R71007), a derivative of HEK293 cells which constitutively express the Tet repressor protein and prevent antigen expression during virus production. The resultant virus, ChAdOx1 nCov-19 B.1.351 (AZD2816), was purified by CsCl gradient ultracentrifugation as described previously. The titres were determined on T-RExTM cells using anti-hexon immunostaining assay based on the QuickTiter™ Adenovirus Titer Immunoassay kit (Cell Biolabs Inc).

Ethics Statement; Mice were used in accordance with the UK Animals (Scientific Procedures) Act 1986 under project license number P9804B4F1 granted by the UK Home Office with approval from the local Animal Welfare and Ethical Review Board (AWERB) at the University of Oxford. Age matched animals were purchased from commercial suppliers as a batch for each experiment and randomly split into groups on arrival at our facility. Animals were group housed in IVCs under SPF conditions, with constant temperature (20-24°C) and humidity (45-65%) with lighting on a 13:11 light-dark cycle (7am to 8pm). For induction of short-term anaesthesia, animals were anaesthetised using vaporised IsoFlo®. All animals were humanely sacrificed at the end of each experiment by an approved Schedule 1 method.

Animals and Immunizations; Inbred BALB/cOlaHsd (BALB/c) (Envigo) (n=5 to 7 mice per group), were immunized intramuscularly (i.m.) in the musculus tibialis with 10⁸ infectious units (iu) of ChAdOx1 vector. Mice were boosted with the relevant vaccine candidate 4 weeks later. All mice were sacrificed 3 weeks (or at a time indicated on figure legend) after the final vaccination with serum and spleens collected for analysis of humoral and cell-mediated immunity.

Antigen specific IgG ELISA; MaxiSorp plates (Nunc) were coated with 250ng/well of full-length SARS-CoV-2 wild-type (WT) spike (NC_045512), B.1.351 spike, B.1.1.7 spike, P.1 spike, B.1.429 spike and original wild-type spike sequence with a D to G amino acid substitution at position 614 (D614G) protein (Table S1) overnight at 4 °C, prior to washing in PBS/Tween (0.05% v/v) and blocking with Blocker Casein in PBS (Thermo Fisher Scientific) for 1 hour at room temperature (RT). Standard positive serum (pool of mouse serum with high endpoint titre against original wild-type spike protein), individual mouse serum samples, negative and an internal control (diluted in

casein) were incubated for 2 hrs at RT. Following washing, bound antibodies were detected by addition of a 1 in 5000 dilution of alkaline phosphatase (AP)-conjugated goat anti-mouse IgG (Sigma-Aldrich) for 1 hour at RT and addition of p-Nitrophenyl Phosphate, Disodium Salt substrate (Sigma-Aldrich). An arbitrary number of ELISA units (EU) were assigned to the reference pool and optical density values of each dilution were fitted to a 4-parameter logistic curve using SOFTmax PRO software. ELISA units were calculated for each sample using the optical density values of the sample and the parameters of the standard curve. All data was log-transformed for presentation and statistical analyses.

Micro neutralisation test (mVNT) using lentiviral-based pseudotypes bearing the SARS-CoV-2 Spike; Spike-expressing plasmid constructs were generated using the QuikChange Lightning Multi Site-Directed Mutagenesis kit (Agilent) on a previously described Wuhan-hu-1 template²². Lentiviral-based SARS-CoV-2 pseudotyped viruses were generated in HEK293T cells incubated at 37 °C, 5% CO₂ as previously described ²³. Briefly, cells were seeded at a density of 7.5 x 10⁵ in 6 well dishes, before being transfected with plasmids as follows: 500 ng of SARS-CoV-2 spike (NC 045512, B.1.351, B.1.617.1, B.1.617.2) (Table S1), 600 ng p8.91 (encoding for HIV-1 gag-pol), 600 ng CSFLW (lentivirus backbone expressing a firefly luciferase reporter gene), in Opti-MEM (Gibco) along with 10 μL PEI (1 μg/mL) transfection reagent. A 'no glycoprotein' control was also set up using the pcDNA3.1 vector instead of the SARS-CoV-2 Spike expressing plasmid. The following day, the transfection mix was replaced with 3 mL DMEM with 10% FBS (DMEM-10%) and incubated for 48 and 72 hours, after which supernatants containing pseudotyped SARS-CoV-2 (SARS-CoV-2 pps) were harvested, pooled and centrifuged at 1,300 x g for 10 minutes at 4 °C to remove cellular debris. Target HEK293T cells, previously transfected with 500 ng of a human ACE2 expression plasmid (Addgene, Cambridge, MA, USA) were seeded at a density of 2×10^4 in 100 µL DMEM-10% in a white flat-bottomed 96-well plate one day prior to harvesting SARS-CoV-2 pps. The following day, SARS-CoV-2 pps were titrated 10-fold on target cells, and the remainder stored at -80 °C. For mVNTs, sera was diluted 1 in 20 in serum-free media and 50 µL was added to a 96well plate in triplicate and titrated 2-fold. A fixed titred volume of SARS-CoV-2 pps was added at a dilution equivalent to 10⁵ to 10⁶ signal luciferase units in 50 μL DMEM-10% and incubated with sera for 1 hour at 37 °C, 5% CO2 (giving a final sera dilution of 1 in 40). Target cells expressing human ACE2 were then added at a density of 2 x 10⁴ in 100 μL and incubated at 37 °C, 5% CO2 for 72 hours. Firefly luciferase activity was then measured with BrightGlo luciferase reagent and a Glomax-Multi+ Detection System (Promega, Southampton, UK). Pseudotyped virus neutralisation titres were calculated by interpolating the point at which there was 80% reduction in luciferase activity, relative to untreated controls (80% neutralisation, inhibitory dilution 80, ID80).

ELISpot and ICS staining; Spleen single cell suspension were prepared by passing cells through 70μM cell strainers and treatment with ammonium potassium chloride lysis solution prior to resuspension in complete media. Splenocytes were stimulated 15mer peptides (overlapping by 11) spanning the length of SARS-CoV-2 protein and tpa promoter, with peptide pools subdivided into common and variant peptide regions within the S1 and S2 region of spike (Figure 1A) (Table S2). For analysis of IFNγ production by ELISpot, splenocytes were stimulated with two pools of S1 peptides (pools 1 and 2) and two pools of S2 peptides (pools 3 and 4) (final concentration of $2\mu g/mL$) on hydrophobic-PVDF ELISpot plates (Merck) coated with $5\mu g/mL$ anti-mouse IFNγ (AN18). After 18-20 hours of stimulation at 37° C, IFNγ spot forming cells (SFC) were detected by staining membranes with anti-mouse IFNγ biotin (1mg/mL) (R46A2) followed by streptavidin-Alkaline Phosphatase (1mg/mL) and development with AP conjugate substrate kit (BioRad, UK). Spots were enumerated using an AID ELISpot reader and software (AID).

For analysis of intracellular cytokine production, cells were stimulated at 37°C for 6 hours with 2µg/mL a pool of S1 (ELISpot pools 1 and 2) or S2 (ELISpot pools 3 and 4) total original spike peptides (Table S2), media or positive control cell stimulation cocktail (containing PMA-lonomycin, BioLegend), together with 1μg/mL Golgi-plug (BD) and 2μl/mL CD107a-Alexa647 (Clone 1D4B). Following surface staining with CD3-A700 (Clone 17A2, 1 in 100), CD4-BUV496 (Clone GK1.5, 1 in 200), CD8-BUV395 (Clone 53-6.7, 1 in 200), CD11a-PECy7 (Clone H155-78, 1 in 200), CD44-BV780 (Clone IM7, 1 in 100), CD62L-BV711 (Clone MEL-14, 1 in 100), CD69-PECy7 (Clone H1.2F3, 1 in 100), CD103-APCCy7 (Clone 2E7, 1 in 100) and CD127-BV650 (Clone A7R34, 1 in 100) cells were fixed with 4% paraformaldehyde and stained intracellularly with IL2-PerCPCy5.5 (Clone JES6-5H4, 1 in 100), IL4-BV605 (Clone 11B11, 1 in 100), IL10-PE (Clone JES5-16E3, 1 in 100), IFNγ-e450 (Clone XMG1.2, 1 in 100) and TNF α -A488 (Clone MP6-XT22, 1 in 100) diluted in Perm-Wash buffer (BD). Sample acquisition was performed on a Fortessa (BD) and data analyzed in FlowJo V10 (TreeStar). An acquisition threshold was set at a minimum of 5000 events in the live CD3⁺ gate. Antigen specific T cells were identified by gating on LIVE/DEAD negative, size (FSC-A vs SSC), doublet negative (FSC-H vs FSC-A), CD3⁺, CD4⁺ or CD8⁺ cells and each individual cytokine. T cell subsets were gated within the population of "IFN γ^+ or TNF α^{+} " responses and are presented after subtraction of the background response detected in the corresponding media stimulated control sample for each mouse, and summing together the response detected to each pool of peptides. T effector (Teff) cells were defined as CD62Llow CD127low, T effector memory (Tem) cells defined as CD62Llow CD127hi and T central memory (Tcm) cells defined as CD62Lhi CD127hi (Figure S1). The total number of cells was calculated by multiplying the frequency of the background corrected population (expressed as a percentage of total lymphocytes) by the total number of lymphocytes counted in each individual spleen sample.

Statistical analysis; All graphs and statistical analysis were performed using Prism v9 (Graphpad). For analysis of vaccination regimen against a single variable (eg IgG level), data was analysed with a one-way anova (Kruskal-Wallis) followed by post-hoc Dunn's multiple comparison test. For analysis of vaccination regimen against multiple variables (eg each individual cytokine or T cell subset) the data was analysed with a two-way analysis of variance, where a significant difference was observed, a post-hoc analysis was performed to compare the overall effect of vaccination regimen. In graphs where a significant difference was observed between multiple vaccine groups, the highest p value is displayed on the graph. All data displayed on a logarithmic scale was log₁₀ transformed prior to statistical analysis (ELISA Units, Neutralisation Titres, Total Cell Numbers).

Data availability: The data that support the findings of this study are available within the article and its Supplementary Information files or are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Acknowledgments; The authors would like to thank the BMS staff for animal husbandry and A. Worth, J.Furze, M. Mykhaylyk and R. Evans for facilities support.

Funding; This research was funded by AstraZeneca. JN, TPP, WSB and DB are funded by the G2P-UK National Virology consortium, MRC/UKRI (grant ref: MR/W005611/1).

Author Contributions; SM, RK, CP cloned and produced virus preparations; AJS, MU, AT, CB & ERA performed animal procedures and/or sample processing; AJS, MU, NT, JN, CB performed

experiments; AJS, NT, DA analyzed data; CL, WD, JM, HD, FRD, DP, TPP, WSB, HB, KR, GS, PM provided reagents; AJS, TL & SG designed the study. AJS & TL wrote the manuscript. All authors reviewed the final version of the manuscript.

Competing interests; SCG is co-founder and board member of Vaccitech and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines and a patent application covering the ChAdOx1 nCoV-19 (AZD1222) vaccine. TL is named as an inventor on a patent application covering the ChAdOx1 nCoV-19 (AZD1222) vaccine and was consultant to Vaccitech. PM was an employee of AstraZeneca, KR is an employee of AstraZeneca. HB is an employee of AstraZeneca and is a named inventor on a patent application covering the AZD2816 vaccine.

References:

- Vasileiou, E. *et al.* Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. *Lancet* **397**, 1646-1657, doi:10.1016/S0140-6736(21)00677-2 (2021).
- 2 Hall, V. J. *et al.* COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. *Lancet* **397**, 1725-1735, doi:10.1016/S0140-6736(21)00790-X (2021).
- Mahase, E. Covid-19: One dose of vaccine cuts risk of passing on infection by as much as 50%, research shows. *BMJ* **373**, n1112, doi:10.1136/bmj.n1112 (2021).
- Tegally, H. *et al.* Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. *medRxiv*, 2020.2012.2021.20248640, doi:10.1101/2020.12.21.20248640 (2020).
- 5 Zhou, D. *et al.* Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. *Cell* **184**, 2348-2361 e2346, doi:10.1016/j.cell.2021.02.037 (2021).
- Spencer, A. J. *et al.* Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. *Nature communications* **12**, 2893, doi:10.1038/s41467-021-23173-1 (2021).
- 7 Li, Q. *et al.* The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. *Cell* **182**, 1284-1294 e1289, doi:10.1016/j.cell.2020.07.012 (2020).
- 8 Hou, Y. J. *et al.* SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. *Science* **370**, 1464-1468, doi:10.1126/science.abe8499 (2020).
- 9 Zhang, L. *et al.* SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. *Nature communications* **11**, 6013, doi:10.1038/s41467-020-19808-4 (2020).
- Nelson, G. *et al.* Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. *bioRxiv*, 2021.2001.2013.426558, doi:10.1101/2021.01.13.426558 (2021).
- 11 Wang, W. B. *et al.* E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: Binding free energy calculation studies. *bioRxiv*, 2021.2002.2017.431566, doi:10.1101/2021.02.17.431566 (2021).
- Greaney, A. J. *et al.* Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. *Cell Host Microbe* **29**, 44-57 e49, doi:10.1016/j.chom.2020.11.007 (2021).
- 13 Xie, X. *et al.* Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. *Nat Med* **27**, 620-621, doi:10.1038/s41591-021-01270-4 (2021).
- Li, Q. *et al.* SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. *Cell* **184**, 2362-2371 e2369, doi:10.1016/j.cell.2021.02.042 (2021).
- Zost, S. J. *et al.* Potently neutralizing and protective human antibodies against SARS-CoV-2. *Nature* **584**, 443-449, doi:10.1038/s41586-020-2548-6 (2020).
- 16 Cerutti, G. *et al.* Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. *Cell Host Microbe* **29**, 819-833 e817, doi:10.1016/j.chom.2021.03.005 (2021).

- Yang, L. *et al.* COVID-19 antibody therapeutics tracker: a global online database of antibody therapeutics for the prevention and treatment of COVID-19. *Antib Ther* **3**, 205-212, doi:10.1093/abt/tbaa020 (2020).
- 18 Collier, D. A. *et al.* Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. *Nature* **593**, 136-141, doi:10.1038/s41586-021-03412-7 (2021).
- 19 Wibmer, C. K. *et al.* SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. *Nat Med* **27**, 622-625, doi:10.1038/s41591-021-01285-x (2021).
- van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. *Nature* **586**, 578-582, doi:10.1038/s41586-020-2608-y (2020).
- Dicks, M. D. *et al.* A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. *PLoS One* **7**, e40385, doi:10.1371/journal.pone.0040385 (2012).
- McKay, P. F. *et al.* Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. *Nature communications* **11**, 3523, doi:10.1038/s41467-020-17409-9 (2020).
- Graham, S. P. *et al.* Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. *NPJ Vaccines* **5**, 69, doi:10.1038/s41541-020-00221-3 (2020).

Table 1: Microneutralisation Titres

Prime	Boost	Boost	Time post last vaccine	Original wild-type spike		B.1.351 (Beta)		B.1.617.1 (Kappa)		B.1.617.2 (Delta)	
				ID50	ID80	ID50	ID80	ID50	ID80	ID50	ID80
AZD1222			16 days	186 (70 to 474)	55 (43 to 297)	40	40	40	40	40	40 (40 to 41)
AZD2816			16 days	107 (40 to 297)	40 (40 to 118	81 (51 to 231)	55 (40 to 163)	40 (40 to 42)	40	40	40
AZD1222 & AZD2816			16 days	157 (75 to 248)	65 (40 to 93)	51 (40 to 72)	41 (40 to 51)	40 (40 to 63)	40	40	40
AZD1222	AZD2816		20 days	1285 (541 to 2560)	700 (307 to 1661)	661 (212 to 1719)	235 (167 to 1057)	276 (126 to 964)	177 (85 to 565)	226 (54 to 751)	145 (43 to 467)
AZD1222	AZD1222		48 days	2546 (1789 to 2560)	1158 (627 to 1658)	350 (69 to 630)	111 (51 to 380)	132 (54 to 490)	95 (44 to 185)	40 (40 to 582)	40 (40 to 245)
AZD1222	AZD1222	AZD2816	20 days	2560 (1452 to 2560)	2159 (584 to 2408)	1148 (383 to 2475)	742 (273 to 1628)	724 (397 to 1874)	481 (267 to 947)	637 (87 to 1656)	316 (69 to 1172)

Functional ability of antibodies to neutralise pseudotyped virus expressing original spike, B.1.351 or B.1.617 spike protein was measured in the serum of vaccinated mice. Pseudotyped virus neutralization titres are expressed as the reciprocal of the serum dilution that inhibited luciferase expression by 50% (ID50) or 80% (ID80). Table shows the median (min to max) per group.

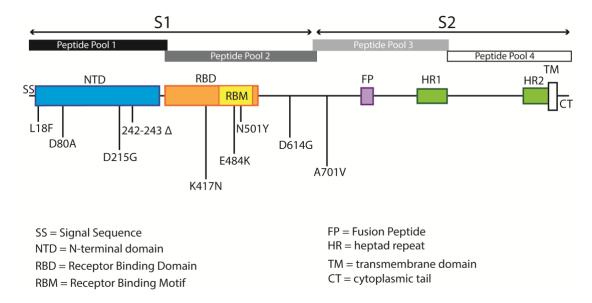
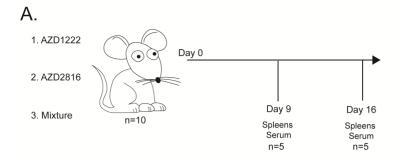



Figure 1: Schematic of SARS-CoV-2 spike protein and peptide pools used in studies

Schematic is a graphical representation of spike protein indicating location of the signal sequence (SS), N-terminal domain (NTD), receptor binding domain (RBD, receptor binding motif (RBM), fusion peptide (FP), heptad repeat (HR) regions, transmembrane domain (TM) and cytoplasmic tail (CT). Peptide pools used to stimulate splenocytes were sub-divided into 4 pools to cover the S1 and S2 regions of spike. Amino acid changes between original and B.1.351 variant virus and encoded in the AZD2816 vaccine construct are indicated.

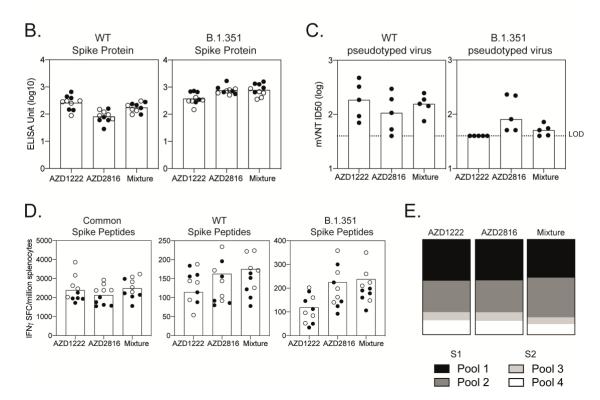
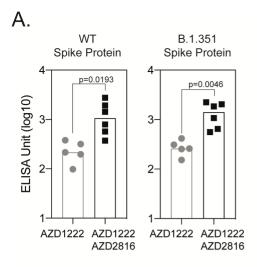
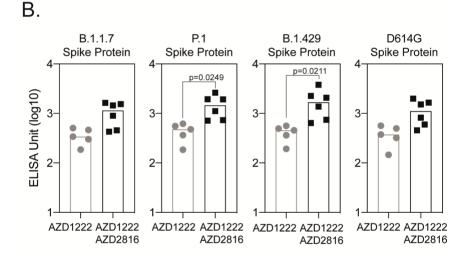




Figure 2: Immune response following a single dose of ChAdOx1 vaccines

- **A.**) BALB/c mice (n=10) were vaccinated with 10⁸ iu of AZD1222 (ChAdOx1 nCoV-19), AZD2816 (ChAdOx1 nCoV-19 B.1.351) or 10⁸ iu of each vaccine mixed together. Mice were sacrificed 9 or 16 days later to measure antibody and T cell responses.
- **B.**) Total IgG levels measured in the serum of mice against original spike protein (WT) or B.1.351 spike protein.
- **C.**) Microneutralisation titres mVNT (ND50) measured in the serum of mice day 16 post vaccination, against pseudotyped virus expressing original spike (WT) or B.1.351 protein. Limit of detection (LOD) in the assay is defined as a titre of 40.
- **D.**) IFN γ secreting cells measured by ELISpot on day 9 or day 16, with splenocytes stimulated with pools of common peptides, original (WT) spike peptides or corresponding B.1.351 peptides covering the regions of difference between SARS-CoV-2 isolates.
- **E.**) Proportion of IFN γ secreting cells measured against spike common peptides, sub-divided into S1 (pool 1 and pool 2) or S2 (pool 3 or pool 4) regions of spike protein.

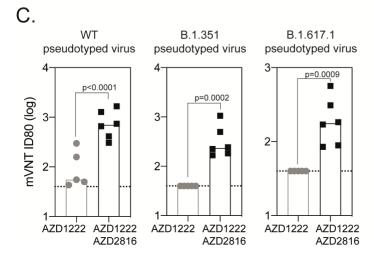
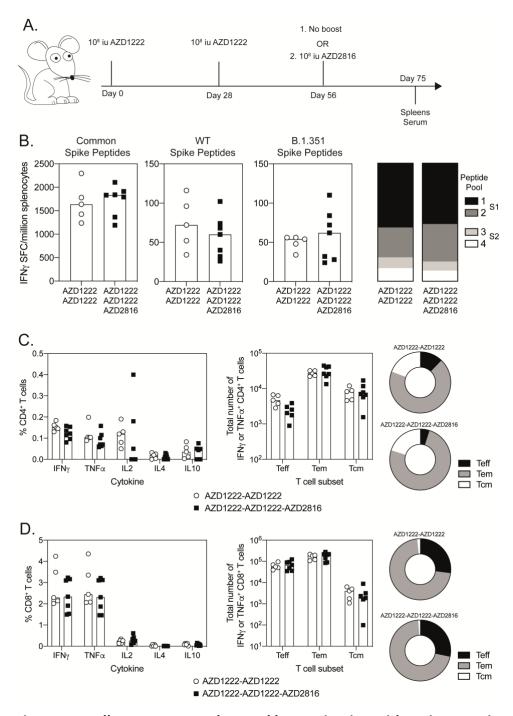
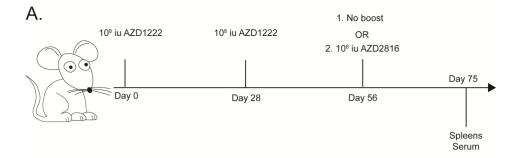


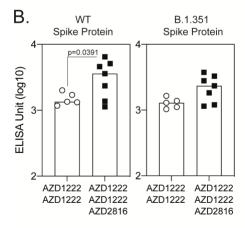
Figure 3: Antibody titres and breadth are increased following a booster dose with AZD2816 vaccine

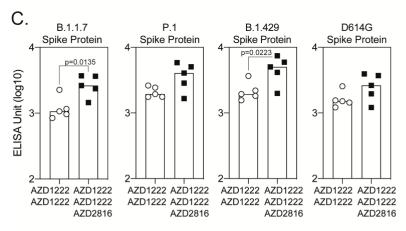
- **A.**) Graphs show total IgG response against original spike protein (WT) or B.1.351 measured in the serum of mice collected 16 days after vaccination with AZD1222 (n=5) (animals from Figure 2) or a prime-boost regimen of AZD1222 followed 4 weeks later by AZD2816 (n=6).
- **B.**) Graphs show total IgG responses measured against B.1.17, P.1, B.1.429 or D614G spike proteins in serum collected 16 days and 3 weeks after the final vaccination.

All ELISAs were performed simultaneously, data log transformed and analysed with a 2-way anova (repeated measure) with a post-hoc positive test, statistically significant differences between groups (p<0.05) are indicated.

C.) Microneutralisation titre of serum (ND80) collected day 16 post-vaccination (animals Figure 2) and 21 days after prime-boost vaccination against pseudotyped virus expressing original (WT), B.1.351 or B.1.617.1 spike protein. Limit of detection in the assay is defined as a titre of 40 (dotted line). Data was log-transformed and analysed with a 2-way anova (repeated measure) and post-hoc positive test, statistically significant differences (p<0.05) between groups are indicated.


Figure 4: T cells responses are boosted by vaccination with variant vaccine AZD2816


A.) BALB/c mice received two doses of 10⁸ iu of AZD1222 (ChAdOx1 nCoV-19) 4 weeks apart and were boosted with 10⁸ iu of AZD2816 (ChAdOx1 nCoV-19 B.1.351) (n=7) or did not receive a final boost (n=5). Mice were sacrificed a further 3 weeks later and splenocytes stimulated with

overlapping SARS-CoV-2 peptides to measure cytokine production by ELISpot or intracellular cytokine staining.

- **B.**) Graphs show IFN γ secreting cells measured by ELISpot with splenocytes stimulated with pools of common peptides, original (WT) spike peptides or corresponding B.1.351 peptides covering the regions of difference between SARS-CoV-2 isolates. Bars graphs represent show the proportion of IFN γ secreting cells measured against spike common peptides, sub-divided into S1 (pool 1 and pool 2) or S2 (pool 3 or pool 4) regions of spike protein.
- **C.**) Graphs show the frequency of cytokine positive CD4⁺ T cells (left), total number of T effector (Tem), T effector memory (Tem) or T central memory cells (Tcm) IFN γ^+ or TNF α^+ CD4⁺ cells (middle), or the proportion of total IFN γ^+ or TNF α^+ CD4⁺ T cells of each T cell subset (right).
- **D.**) Graphs show the frequency of cytokine positive CD8⁺ T cells (left), total number of T effector (Tem), T effector memory (Tem) or T central memory cells (Tcm) IFN γ ⁺ or TNF α ⁺ CD8+ cells (middle), or the proportion of total IFN γ ⁺ or TNF α ⁺ CD8+ T cells of each T cell subset (right).

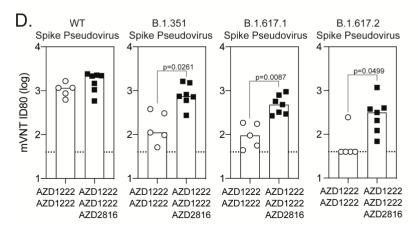


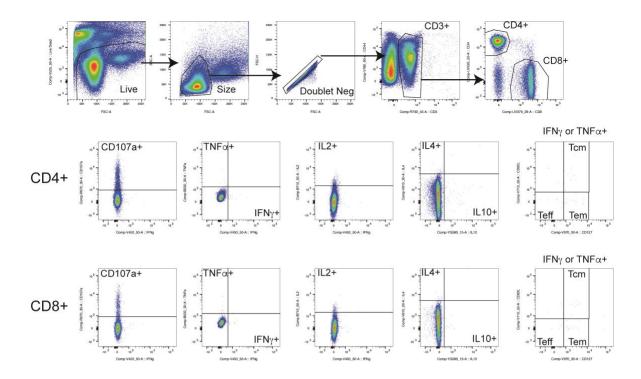
Figure 5: Immune response are boosted by immunisation with AZD2816

A.) In the same experiment as described in Figure 4, BALB/c mice received two doses of 10⁸ iu of AZD1222 (ChAdOx1 nCoV-19) 4 weeks apart and were boosted with 10⁸ iu of AZD2816 (ChAdOx1 nCoV-19 B.1.351) (n=7) or did not receive a final boost (n=5). Mice were sacrificed a further 3 weeks later and antibody responses measured in the serum of mice.

- **B.**) Graphs show the total IgG level measured by ELISA against original spike protein (WT) or B.1.351 spike protein. Data was log transformed and analysed with a two-way analysis of variance (repeated measure) and post-hoc positive test, significance between groups (p<0.05) is indicated.
- **C.**) Graphs show total IgG antibody responses measured by ELISA against B.1.1.7, P.1, B.1.429 or D614G spike protein. Data was log transformed and analysed with a two-way analysis of variance (repeated measure) and post-hoc positive test, significance between groups (p<0.05) is indicated.
- **D.**) Graphs show microneutralisation titres mVNT (ND80) measured against pseudotyped virus expressing original (WT), B.1.351, B.1.617.1 or B.1.617.2 spike protein. Limit of detection in the assay is defined as a titre of 40 (dotted line). Data was log transformed and analysed with a two-way analysis of variance (repeated measure) and post-hoc positive test, significance between groups (p<0.05) is indicated.

Table S1: Sequence changes to SARS-CoV-2 spike protein

	Original	B.1.351	B.1.1.7	P.1	B.1.429	D614G	B.1.617.1	B.1.617.2
	Sequence	Beta	Alpha	Gamma	Epsilon		Карра	Delta
	S13				1			
NTD	L18	F		F				
	L19							R
	T20			N				
	P26			S				
	H69-V70		Δ					
	D80	Α						
	T95						I	
	D138			Υ				
	G142						D	D
	Y144		Δ					
	W152				С			
	E154						K	
	E156-F157							Δ
	R158							G
	R190			S				
	D215	G						
	L242-A243	Δ						
RBD	K417	N		Т				
	L452				R		R	R
	T478							K
	E484	K		K			Q	
	N501	Υ	Υ	Υ				
Other	A570		D					
	D614	G	G	G	G	G	G	G
	H655			Υ				
	P681		Н				R	R
	A701	V						
	T716		1					
	D950							N
	S982		А					
	T1027			1				
	Q1071						Н	
	D1118		Н					
	V1176			F				


Table S2: Overlapping SARS-CoV-2 spike peptide sequences

Mary Common Population				S1	region					
MONTHUMPSION M. C. (2002) Sequence M. L. ST.										
MPYTUI NYSQC	#	Common Pentides	Original	R 1 351 Seguence	1,,	Common Pentides	Original	R 1 351 Seguence		
	#	Common Peptides	NC_045512 Sequence	B.1.351 Sequence	#	Common Peptides	NC_045512 Sequence	B.1.351 Sequence		
STATES	1	MFVFLVLLPLVSSQC			78	EKGIYQTSNFRVQPT				
SCOUNTRICUPAN SCOUNTRICUPAN STREET, STRE	2				_					
	3				_					
STEEPANTENERS	5				_					
Total	6	RTOI PPAYTNSFTRG	NLTTRIQLPPATINS	NETTRIQLEPPATINS	_					
THE	7				_					
10	8				_					
13	9	TRGVYYPDKVFRSSV			86	VFNATRFASVYAWNR				
22	10				_					
33 ISTORLEFFSNYT	11									
15 DEFENSATIVENSAS					_					
32 SYNONYMENSITICS	14				_					
12 Fight Brown Programmer	15				_					
	16	NVTWFHAIHVSGTNG			93	YNSASFSTFKCYGVS				
19	17	FHAIHVSGTNGTKRF			94	SFSTFKCYGVSPTKL				
10 NPULPRIDOCYT ST	18				_					
12	19				-					
22 PINNOSYMASTESN 99 INVYASSYMROSY	20	NIDI/I DENIDGV/VEACT	KKFUNPVLPFNDGVY	KKFANPVLPFNDGVY	_					
32	22		 	1			1	+		
24	23				_					
102 OPENGAPOGISHA 102 OPENGAPOGISHA 103 OPENGAPOGISHA OPENGAPOGISHA OPENGAPOGISHA 103 OPENGAPOGISHA OPENGAPOGISHA OPENGAPOGISHA OPENGAPOGISHA OPENGAPOGISHA OPENGAPOSISHA OPENGAPOGISHA OPENGAPOSISHA OPEN	24				_					
CGTENIADYNKERD CGTENIADYNKERD CGTENIADYNKERD CGTENIADYNKERDOFTG NADYNKERDOFTG NADY	25				-		DEVRQIAPGQTGKIA	DEVRQIAPGQTGNIA		
RADYINKINDONTS	26				_					
29	27									
10 LUNNATAYUNKUC	28				_	VALVILL DESCRIPTION ::	KIADYNYKLPDDFTG	NIADYNYKLPDDFTG		
32					_					
109 VANNISHERPENDERGY	31				_					
110	32				-					
112	33				_					
Section	34	FQFCNDPFLGVYYHK			111	LDSKVGGNYNYLYRL				
	35	NDPFLGVYYHKNNKS			112	VGGNYNYLYRLFRKS				
NESWMESERWYSSA	36				_					
MESFERVYSSANNCT	37				_					
10 FRYYSSANNCTERY	38				_					
118 SANNCTFEYVSQPF										
	41					· ·				
	42						YQAGSTPCNGVEGFN	YQAGSTPCNGVKGFN		
MDLEGKQGNFKNLRE	43	EYVSQPFLMDLEGKQ			120		STPCNGVEGFNCYFP	STPCNGVKGFNCYFP		
123	44	QPFLMDLEGKQGNFK					NGVEGFNCYFPLQSY	NGVKGFNCYFPLQSY		
NEKNLREPYKNIDG	45	,-			122	GFNCYFPLQSYGFQP				
	46				_					
	47				_					
100 100										
	50				_	YOPYRVVVLSFELLH	NOVOIQI INVVVESI	TOVOTQLTIKVVVLSI		
SKHTPINLVRDLPQG	51		FKIYSKHTPINLVRD	FKIYSKHTPINLVRG	-					
VRDLPQGFSALEPLV VRGLPQGFSALEPLV 131 PATVCGPKKSTNLVK	52									
132 CGPKKSTNLVKNKCV	53				_					
SALEPLVDLPIGINI	54		VRDLPQGFSALEPLV	VRGLPQGFSALEPLV						
134 LVKNKCVNFNFNGLT 135 KCVNFNFNGLT 136 136 137 136 137 136 137 136 137 137 137 137 137 138 13	55		1				-	-		
	56		 							
INITREQTILALHRS	57	PLVDLPIGINITKFQ	LPIGINITRECTUA	I PIGINITREOTI HP			+	+		
REQTILALHRSYLTP	59			-	_					
LILALHRSYLTPGDSSS LHRSYLTPGDSSSGWT 138 TGVLTESNKKFLPFQ LTSNKKFLPFQQFGR 139 TESNKKFLPFQQFGR 139 TESNKKFLPFQQFGRDIAD 140 KKFLPFQQFGRDIAD 141 PFQQFGRDIAD 142 FGRDIADTTDA 142 FGRDIADTTDA 142 FGRDIADTTDA 144 TOSAVRDPQTLE 145 TOSAVRDPQTLE 145 TOSAVRDPQTLE 146 TOSAVRDPQTLE 147 TOSAVRDPQTLE 148 TOSAVRDPQTLE 149 TOSAVRDPQTLE 149 TOSAVRDPQTLE 149 TOSAVRDPQTLE 149 TOSAVRDPQTLE 149 TOSAVRDPQTLE 149 GGVSVITPGTN 148 PCSFGGVSVIT 149 GGVSVITPGTN 149 GGVSVITPGTN 149 GGVSVITPGTN 149 GGVSVITPGTN 150 VITPGTNTSNQVAV 151 GTNTSNQVAVLYQDV GTNTSNQVAVLYQGV TOSAVRDPQTLE 151 GTNTSNQVAVLYQDV GTNTSNQVAVLYQGV TOSAVRDPQT 153 AVLYQDVNCTE SNQVAVLYQDVNCTE SNQVAVLYQGVNCTE 155 CTEVPVAIHAD QGVNCTEVPVAIHAD QGVNCTEVPVAIHAD 155 CTEVPVAIHADQLTP	60				+					
LTPGDSSSGWTAGAA LTPGDSSSGWTAGAAAYYV LTPGDSSSGWTAGAAAYYV LTPGDSSSGWTAGAAAYYV LTPGDSSSGWTAGAAAYYV LTPGDSSSGWTAGAAAYYV LTPGQFGRDIADTTDA FORDIADTTDAVRDP LTPGDFGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGRDIADTTDAVRDP LTPGDFGGGRDIADTTDAVRDP LTPGDFGGGRDIADTTDAVRDP LTPGDFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	61				_					
DSSSGWTAGAAAYYV 141 PFQQFGRDIADTTDA 55 GWTAGAAAYYVGYLQ 142 FGRDIADTTDAVRDP 56 GAAAYYVGYLQPRTF 143 IADTTDAVRDPQTLE 57 YYVGYLQPRTFLIKY 144 TDAVRDPQTLEILDI 58 YLQPRTFLIKYNENG 59 RTFLIKYNENGTITD 146 TLEILDITPCS 50 LKYNENGTITDAVDC 147 LDITPCSFGGVSVIT 201 LKYNENGTITDAVDC 202 LKYNENGTITDAVDC 203 VDCALDPLSET 204 GGVSVITPGTNTSNQ 205 SETKCTLKSFTVEKG 206 CTLKSFTVEKGIYQT 207 SFTVEKGIYQTSNFR 150 QDVNCTEVPVAIHAD 208 QGVNCTEVPVAIHAD 208 QG	62				_					
GWTAGAAAYYVGYLQ 142 FGRDIADTTDAVRDP 66 GAAAYYVGYLQPRTF 143 IADTTDAVRDPQTLE 67 YYVGYLQPRTFLLKY 144 TDAVRDPQTLEILDI 68 YLQPRTFLLKYNENG 69 RTFLLKYNENGTITD 146 TLEILDITPCS 69 RTFLLKYNENGTITD 147 LDITPCSFGGV 148 PCSFGGVSVIT 171 ENGTITDAVDCALDP 172 ITDAVDCALDP 173 VDCALDPLSETKCTL 174 LDPLSETKCTLKSFT 175 SETKCTLKSFTVEKG 176 CTLKSFTVEKG 177 SFTVEKGIYQT 178 QGVNCTEVPVAIHAD 177 SFTVEKGIYQTSNFR 158 CTEVPVAIHADQLTP 159 CTEVPVAIHADQLTP	63				_					
143 IADTTDAVRDPQTLE 57 YYVGYLQPRTFLIKY 144 TDAVRDPQTLEILDI 58 YLQPRTFLIKYNENG 59 RTFLIKYNENGTITD 146 TLEILDITPCS 59 RTFLIKYNENGTITD 147 LDITPCSFGGV 148 PCSFGGVSVIT 171 ENGTITDAVDCALDP 184 PCSFGGVSVITPGTN 172 IITDAVDCALDPLSET 187 VDCALDPLSETKCTL 187 VDCALDPLSETKCTL 187 VDCALDPLSETKCTL 187 VDCALDPLSETKCTL 188 GGVSVITPGTNTSNQ 189 GGVSVITPGTNTSNQ 190 GTNTSNQVAVLYQDV 191 GTNTSNQVAVLYQDV 192 GTNTSNQVAVLYQGV 193 VDCALDPLSETKCTL 194 LDPLSETKCTLKSFT 195 SETKCTLKSFTVEKG 195 SETKCTLKSFTVEKG 196 CTLKSFTVEKGIYQT 197 SFTVEKGIYQT 198 QVNCTEVPVAIHAD 198 QGVNCTEVPVAIHAD 199 QVNCTEVPVAIHAD 199 QGVNCTEVPVAIHAD 199 QGVNCTEVPVAIHAD 199 QGVNCTEVPVAIHAD 199 QGVNCTEVPVAIHAD 199 QGVNCTEVPVAIHAD	64									
144 TDAVRDPQTLEILDI 145 RDPQTLEILDIPCS 146 TLEILDITPCS 159 RTFLLKYNENGTITD 146 TLEILDITPCSFGGV 170 LKYNENGTITDAVDC 147 LDITPCSFGGVSVIT 148 PCSFGGVSVITPGTN 171 ENGTITDAVDCALDP 172 IITDAVDCALDPLSET 173 VDCALDPLSETKCTL 174 LDPLSETKCTL 175 GTNTSNQVAVL 176 LTRISTIVEKGIYQT 177 SFTVEKGIYQT 178 SFTVEKGIYQTSNFR 179 QGVNCTEVPVAIHAD 170 QGVNCTEVPVAIHAD 170 QGVNCTEVPVAIHAD 171 GTVTSNQVAVLPQDV 172 STVCKGIYQTSNFR 173 QDVNCTEVPVAIHAD 174 QGVNCTEVPVAIHAD 175 CTEVPVAIHADQLTP	65		 		_					
58 YLQPRTFLLKYNENG 145 RDPQTLEILDITPCS	67				_					
RTFLLKYNENGTITD 146 TLEILDITPCSFGGV 147 LDITPCSFGGVSVIT 148 PCSFGGVSVITPGTN 149 GGVSVITPGTNTSNQ 149 GGVSVITPGTNTSNQ 150 VITPGTNTSNQVAVL 150 VITPGTNTSNQVAVL 151 GTNTSNQVAVLYQDV 152 GTNTSNQVAVLYQDV 153 STKCTLKSFTVEKG 154 STKCTLKSFTVEKG 155 CTEVPVAIHADQLTP 155 CTEVPVAIHADQLTP	68		†		-					
147 LDITPCSFGGVSVIT	69				_					
149 GGVSVITPGTNTSNQ 73 VDCALDPLSETKCTL 150 VITPGTNTSNQVAVL 74 LDPLSETKCTLKSFT 151 GTNTSNQVAVLYQDV GTNTSNQVAVLYQGV 75 SETKCTLKSFTVEKG 152 SNQVAVLYQDVNCTE SNQVAVLYQGVNCTE 76 CTLKSFTVEKGIYQT 153 AVLYQDVNCTEVPVA 77 SFTVEKGIYQTSNFR 154 QDVNCTEVPVAIHAD 155 CTEVPVAIHADQLTP	70				147					
73 VDCALDPLSETKCTL 74 LDPLSETKCTLKSFT 75 SETKCTLKSFT 76 CTLKSFTVEKG 77 SFTVEKGIYQT 78 STVEKGIYQTSNFR 79 STVEKGIYQTSNFR 70 STVEKGIYQTSNFR 70 STVEKGIYQTSNFR 71 STVEKGIYQTSNFR 71 STVEKGIYQTSNFR 72 STVEKGIYQTSNFR 73 STVEKGIYQTSNFR 74 STVEKGIYQTSNFR 75 STVEKGIYQTSNFR 76 STVEKGIYQTSNFR 77 STVEKGIYQTSNFR 78 STVEKGIYQTSNFR 79 STVEKGIYQTSNFR 79 STVEKGIYQTSNFR 70 STVEKGIYQTSNFR 70 STVEKGIYQTSNFR 70 STVEKGIYQTSNFR 71 STVEKGIYQTSNFR 71 STVEKGIYQTSNFR 72 STVEKGIYQTSNFR 73 STVEKGIYQTSNFR 74 STVEKGIYQTSNFR 75 STVEKGIYQTSNFR 76 STVEKGIYQTSNFR 77 STVEKGIYQTSNFR	71	ENGTITDAVDCALDP			148	PCSFGGVSVITPGTN				
T4 LDPLSETKCTLKSFT 151 GTNTSNQVAVLYQDV GTNTSNQVAVLYQGV CTS SETKCTLKSFTVEKG 152 SNQVAVLYQDVNCTE SNQVAVLYQGVNCTE SNQVAVLYQGVNCTE TS SNQVAVLYQGVNCTE TS SNQVAVLYQGVNCTE TS SNQVAVLYQGVNCTE TS SNQVAVLYQGVNCTEVPVA TS STVEKGIYQTSNFR 154 QDVNCTEVPVAIHAD QGVNCTEVPVAIHAD TS CTEVPVAIHADQLTP SNQVAVLYQGVNCTEVPVAIHAD	72				_					
75 SETKCTLKSFTVEKG 152 SNQVAVLYQDVNCTE SNQVAVLYQGVNCTE 76 CTLKSFTVEKGIYQT 153 AVLYQDVNCTEVPVA AVLYQGVNCTEVPVA 77 SFTVEKGIYQTSNFR 154 QDVNCTEVPVAIHAD QGVNCTEVPVAIHAD 155 CTEVPVAIHADQLTP	73		1		_	VITPGTNTSNQVAVL	CTAITCAIC	CTAITCALO (1) (1) (1)		
76 CTLKSFTVEKGIYQT 153 AVLYQDVNCTEVPVA AVLYQGVNCTEVPVA 77 SFTVEKGIYQTSNFR 154 QDVNCTEVPVAIHAD QGVNCTEVPVAIHAD 155 CTEVPVAIHADQLTP	74		-							
77 SFTVEKGIYQTSNFR 154 QDVNCTEVPVAIHAD QGVNCTEVPVAIHAD 155 CTEVPVAIHADQLTP QGVNCTEVPVAIHAD			+		_					
155 CTEVPVAIHADQLTP	76		 		_					
					_	CTEVPVAIHADQLTP				
<u>, , , , , , , , , , , , , , , , , , , </u>	tpa	MDAMKRGLCCVLLLC			_					

tpa	RGLCCVLLLCGAVFV			157	HADQLTPTWRVYSTG		
tpa	VLLLCGAVFVSASQE			158	LTPTWRVYSTGSNVF		
tpa	GAVFVSASQEIHARF			159	WRVYSTGSNVFQTRA		
tpa	SASQEIHARFRRIHS			160	STGSNVFQTRAGCLI		
				161	NVFQTRAGCLIGAEH		
				162	TRAGCLIGAEHVNNS		
				163	CLIGAEHVNNSYECD		
				164	AEHVNNSYECDIPIG		
				165	NNSYECDIPIGAGIC		
				166	ECDIPIGAGICASYQ		
		<u> </u>		167	PIGAGICASYQTQTN		
-		- 1-	S2 re	gion		- 1.	
		Pool 3	I			Pool 4	1
#	Common Peptides	Original NC_045512 Sequence	B.1.351 Sequence	#	Common Peptides	Original NC_045512 Sequence	B.1.351 Sequence
160	CICACVOTOTNICDDD	NC_045512 Sequence		242	OLCCNECAICCAIND	NC_045512 Sequence	
168	GICASYQTQTNSPRR				QLSSNFGAISSVLND		
169	SYQTQTNSPRRARSV			243	NFGAISSVLNDILSR		
170	QTNSPRRARSVASQS			244	ISSVLNDILSRLDKV		
171	PRRARSVASQSIIAY			245	LNDILSRLDKVEAEV		
172	RSVASQSIIAYTMSL			246	LSRLDKVEAEVQIDR		
173		SQSIIAYTMSLGAEN	SQSIIAYTMSLGVEN	247	DKVEAEVQIDRLITG		
174		IAYTMSLGAENSVAY	IAYTMSLGVENSVAY	248	AEVQIDRLITGRLQS		
175		MSLGAENSVAYSNNS	MSLGVENSVAYSNNS	249	IDRLITGRLQSLQTY		
176		AENSVAYSNNSIAIP	VENSVAYSNNSIAIP	250	ITGRLQSLQTYVTQQ		
177	VAYSNNSIAIPTNFT			251	LQSLQTYVTQQLIRA		
178	NNSIAIPTNFTISVT			252	QTYVTQQLIRAAEIR		
179	AIPTNFTISVTTEIL	ļ		253	TQQLIRAAEIRASAN		
180	NFTISVTTEILPVSM	ļ		254	IRAAEIRASANLAAT		
181	SVTTEILPVSMTKTS	ļ		255	EIRASANLAATKMSE		
182	EILPVSMTKTSVDCT			256	SANLAATKMSECVLG		
183	VSMTKTSVDCTMYIC			257	AATKMSECVLGQSKR		
184	KTSVDCTMYICGDST			258	MSECVLGQSKRVDFC		
185	DCTMYICGDSTECSN			259	VLGQSKRVDFCGKGY		
186	YICGDSTECSNLLLQ			260	SKRVDFCGKGYHLMS		
187	DSTECSNLLLQYGSF			261	DFCGKGYHLMSFPQS		
188	CSNLLLQYGSFCTQL			262	KGYHLMSFPQSAPHG		
189	LLQYGSFCTQLNRAL			263	LMSFPQSAPHGVVFL		
190	GSFCTQLNRALTGIA			264	PQSAPHGVVFLHVTY		
191	TQLNRALTGIAVEQD			265	PHGVVFLHVTYVPAQ		
192	RALTGIAVEQDKNTQ			266	VFLHVTYVPAQEKNF		
193	GIAVEQDKNTQEVFA			267	VTYVPAQEKNFTTAP		
194	EQDKNTQEVFAQVKQ			268	PAQEKNFTTAPAICH		
195	NTQEVFAQVKQIYKT			269	KNFTTAPAICHDGKA		
196	VFAQVKQIYKTPPIK			270	TAPAICHDGKAHFPR		
197	VKQIYKTPPIKDFGG			271	ICHDGKAHFPREGVF		
198	YKTPPIKDFGGFNFS			272	GKAHFPREGVFVSNG		
199	PIKDFGGFNFSQILP			273	FPREGVFVSNGTHWF		
200	FGGFNFSQILPDPSK			274	GVFVSNGTHWFVTQR		
.							
201	NFSQILPDPSKPSKR			275 276	SNGTHWFVTQRNFYE		
202	ILPDPSKPSKRSFIE PSKPSKRSFIEDLLF			277	HWFVTQRNFYEPQII TQRNFYEPQIITTDN		
203	SKRSFIEDLLFNKVT			278	FYEPQIITTDNTFVS		
205	FIEDLLFNKVTLADA			279	QIITTDNTFVSGNCD		
206	LLFNKVTLADAGFIK			280	TDNTFVSGNCDVVIG		
207	KVTLADAGFIKQYGD	 		281	FVSGNCDVVIGIVNN		
208	ADAGFIKQYGDCLGD	1		282	NCDVVIGIVNNTVYD		
209	FIKQYGDCLGDIAAR	1		283	VIGIVNNTVYDPLQP		
210	YGDCLGDIAARDLIC			284	VNNTVYDPLQPELDS		
211	LGDIAARDLICAQKF	ļ		285	VYDPLQPELDSFKEE		
212	AARDLICAQKFNGLT			286	LQPELDSFKEELDKY		
213	LICAQKFNGLTVLPP			287	LDSFKEELDKYFKNH		
214	QKFNGLTVLPPLLTD			288	KEELDKYFKNHTSPD		
215	GLTVLPPLLTDEMIA	ļ		289	DKYFKNHTSPDVDLG		
216	LPPLLTDEMIAQYTS	ļ		290	KNHTSPDVDLGDISG		
217	LTDEMIAQYTSALLA			291	SPDVDLGDISGINAS		
218	MIAQYTSALLAGTIT			292	DLGDISGINASVVNI		
219	YTSALLAGTITSGWT			293	ISGINASVVNIQKEI		
220	LLAGTITSGWTFGAG			294	NASVVNIQKEIDRLN		
221	TITSGWTFGAGAALQ			295	VNIQKEIDRLNEVAK		
222	GWTFGAGAALQIPFA			296	KEIDRLNEVAKNLNE		
223	GAGAALQIPFAMQMA			297	RLNEVAKNLNESLID		
224	ALQIPFAMQMAYRFN			298	VAKNLNESLIDLQEL		
225	PFAMQMAYRFNGIGV			299	LNESLIDLQELGKYE		
226	QMAYRFNGIGVTQNV			300	LIDLQELGKYEQYIK		
227	RFNGIGVTQNVLYEN	İ	İ	301	QELGKYEQYIKWPWY	İ	
228	IGVTQNVLYENQKLI	İ	İ	302	KYEQYIKWPWYIWLG	İ	
	QNVLYENQKLIANQF	İ	1	303	YIKWPWYIWLGFIAG	1	
229		+	i e	304	PWYIWLGFIAGLIAI		
						ł	
230	YENQKLIANQFNSAI			305	WLGFIAGLIAIVMVT		
230 231	YENQKLIANQFNSAI KLIANQFNSAIGKIQ			305 306	WLGFIAGLIAIVMVT		
230 231 232	YENQKLIANQFNSAI KLIANQFNSAIGKIQ NQFNSAIGKIQDSLS			306	IAGLIAIVMVTIMLC		
230 231 232 233	YENQKLIANQFNSAI KLIANQFNSAIGKIQ NQFNSAIGKIQDSLS SAIGKIQDSLSSTAS			306 307	IAGLIAIVMVTIMLC IAIVMVTIMLCCMTS		
230 231 232 233 234	YENQKLIANQFNSAI KLIANQFNSAIGKIQ NQFNSAIGKIQDSLS SAIGKIQDSLSSTAS KIQDSLSSTASALGK			306 307 308	IAGLIAIVMVTIMLC IAIVMVTIMLCCMTS MVTIMLCCMTSCCSC		
230 231 232 233 234 235	YENQKLIANQFNSAI KLIANQFNSAIGKIQ NQFNSAIGKIQDSLS SAIGKIQDSLSSTAS KIQDSLSSTASALGK SLSSTASALGKLQDV			306 307 308 309	IAGLIAIVMVTIMLC IAIVMVTIMLCCMTS MVTIMLCCMTSCCSC MLCCMTSCCSCLKGC		
230 231 232 233 234	YENQKLIANQFNSAI KLIANQFNSAIGKIQ NQFNSAIGKIQDSLS SAIGKIQDSLSSTAS KIQDSLSSTASALGK			306 307 308	IAGLIAIVMVTIMLC IAIVMVTIMLCCMTS MVTIMLCCMTSCCSC		

238	QDVVNQNAQALNTLV		312	KGCCSCGSCCKFDED	
239	NQNAQALNTLVKQLS		313	SCGSCCKFDEDDSEP	
240	QALNTLVKQLSSNFG		314	CCKFDEDDSEPVLKG	
241	TLVKQLSSNFGAISS		315	DEDDSEPVLKGVKLH	
			316	DDSEPVLKGVKLHYT	

A. Media

B. S1 peptides

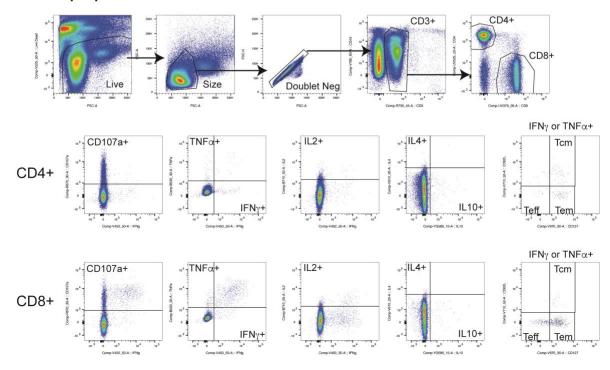


Figure S1: Flow cytometry gating strategy

Antigen specific T cells were identified by gating on LIVE/DEAD negative, size (FSC-A vs SSC), doublet negative (FSC-H vs FSC-A), CD3⁺, CD4⁺ or CD8⁺ cells and each individual cytokine. T effector (Teff) cells were defined as CD62L^{low} CD127^{low}, T effector memory (Tem) cells defined as CD62L^{low} CD127^{hi} and T central memory (Tcm) cells defined as CD62L^{hi} CD127^{hi}. T cell subsets were gated within the population of "IFN γ ⁺ or TNF α ⁺" responses and are presented after subtraction of the background response detected in the corresponding media stimulated control sample (**A.**) from the S1 (**B.**) or S2 peptide stimulated sample for each mouse, and summing together the response detected to each pool of peptides.